Field Phenotyping of Soybean Roots for Drought Stress Tolerance

نویسندگان

  • Berhanu A. Fenta
  • Stephen E. Beebe
  • Karl J. Kunert
  • James D. Burridge
  • Kathryn M. Barlow
  • Jonathan P. Lynch
  • Christine H. Foyer
چکیده

Root architecture was determined together with shoot parameters under well watered and drought conditions in the field in three soybean cultivars (A5409RG, Jackson and Prima 2000). Morphology parameters were used to classify the cultivars into different root phenotypes that could be important in conferring drought tolerance traits. A5409RG is a drought-sensitive cultivar with a shallow root phenotype and a root angle of <40°. In contrast, Jackson is a drought-escaping cultivar. It has a deep rooting phenotype with a root angle of >60°. Prima 2000 is an intermediate drought-tolerant cultivar with a root angle of 40°–60°. It has an intermediate root phenotype. Prima 2000 was the best performing cultivar under drought stress, having the greatest shoot biomass and grain yield under limited water availability. It had abundant root nodules even under drought conditions. A positive correlation was observed between nodule size, above-ground biomass and seed yield under well-watered and drought conditions. These findings demonstrate that root OPEN ACCESS Agronomy 2014, 4 419 system phenotyping using markers that are easy-to-apply under field conditions can be used to determine genotypic differences in drought tolerance in soybean. The strong association between root and nodule parameters and whole plant productivity demonstrates the potential application of simple root phenotypic markers in screening for drought tolerance in soybean.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Drought Stress Responses in Soybean Roots and Nodules

Drought is considered to be a major threat to soybean production worldwide and yet our current understanding of the effects of drought on soybean productively is largely based on studies on above-ground traits. Although the roots and root nodules are important sensors of drought, the responses of these crucial organs and their drought tolerance features remain poorly characterized. The symbioti...

متن کامل

Differential Expression Analysis of a Subset of Drought-Responsive GmNAC Genes in Two Soybean Cultivars Differing in Drought Tolerance

The plant-specific NAC transcription factors play important roles in plant response to drought stress. Here, we have compared the expression levels of a subset of GmNAC genes in drought-tolerant DT51 and drought-sensitive MTD720 under both normal and drought stress conditions aimed at identifying correlation between GmNAC expression levels and drought tolerance degree, as well as potential GmNA...

متن کامل

Integrating omic approaches for abiotic stress tolerance in soybean

Soybean production is greatly influenced by abiotic stresses imposed by environmental factors such as drought, water submergence, salt, and heavy metals. A thorough understanding of plant response to abiotic stress at the molecular level is a prerequisite for its effective management. The molecular mechanism of stress tolerance is complex and requires information at the omic level to understand...

متن کامل

Genome-Wide Expression Profiling of Soybean Two-Component System Genes in Soybean Root and Shoot Tissues under Dehydration Stress

Two-component systems (TCSs) play vital functions in the adaptation of plants to environmental stresses. To identify soybean TCS genes involved in the regulation of drought stress response, we performed tissue-specific expression profiling of all 83 putative TCS genes in plants subjected to dehydration. Under well-watered conditions, the majority of soybean TCS genes were expressed higher in th...

متن کامل

Comparative analysis of root transcriptomes from two contrasting drought-responsive Williams 82 and DT2008 soybean cultivars under normal and dehydration conditions

The economically important DT2008 and the model Williams 82 (W82) soybean cultivars were reported to have differential drought-tolerant degree to dehydration and drought, which was associated with root trait. Here, we used 66K Affymetrix Soybean Array GeneChip to compare the root transcriptomes of DT2008 and W82 seedlings under normal, as well as mild (2 h treatment) and severe (10 h treatment)...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014